YOMEDIA
NONE

Chứng minh rằng a^2 + b^2/a + b + b^2 + c^2/ b + c + c^2 + a^2/c + a

với mọi a,b,c>0 chứng minh rằng

\(\dfrac{a^2+b^2}{a+b}+\dfrac{b^2+c^2}{b+c}+\dfrac{c^2+a^2}{c+a}< =\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:
    Ta có:

    Nhân cả hai vế với $a+b+c$ , BĐT cần chứng minh tương đương với:

    \(\frac{(a^2+b^2)(a+b+c)}{a+b}+\frac{(b^2+c^2)(a+b+c)}{b+c}+\frac{(c^2+a^2)(a+b+c)}{c+a}\leq 3(a^2+b^2+c^2)\)

    \(\Leftrightarrow 2(a^2+b^2+c^2)+\frac{c(a^2+b^2)}{a+b}+\frac{a(b^2+c^2)}{b+c}+\frac{b(a^2+c^2)}{a+c}\leq 3(a^2+b^2+c^2)\)

    \(\Leftrightarrow \frac{c(a^2+b^2)}{a+b}+\frac{a(b^2+c^2)}{b+c}+\frac{b(a^2+c^2)}{a+c}\leq a^2+b^2+c^2\)

    \(\Leftrightarrow \frac{c(a+b)^2-2abc}{a+b}+\frac{a(b+c)^2-2abc}{b+c}+\frac{b(a+c)^2-2abc}{a+c}\leq a^2+b^2+c^2\)

    \(\Leftrightarrow 2(ab+bc+ac)\leq a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\)

    ---------------------------------------------------------------------

    Áp dụng BĐT Cauchy- Schwarz:

    \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq \frac{9}{2(a+b+c)}\)

    \(\Rightarrow a^2+b^2+c^2+2abc\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\geq a^2+b^2+c^2+\frac{9abc}{a+b+c}\)

    Ta cần chứng minh \(a^2+b^2+c^2+\frac{9abc}{a+b+c}\geq 2(ab+bc+ac)\)

    \(\Leftrightarrow (a^2+b^2+c^2)(a+b+c)+9abc\geq 2(ab+bc+ac)(a+b+c)\)

    \(\Leftrightarrow a^3+b^3+c^3+3abc\geq ab(a+b)+bc(b+c)+ca(a+c)\)

    (luôn đúng theo BĐT Schur)

    Do đó ta có đpcm.

    Dấu bằng xảy ra khi $a=b=c$

      bởi khánh nguyễn 26/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON