Tính độ dài đoạn thẳng AB, BM biết tam giác ABC vuông tại A, đường trung tuyến CM
Cho ΔABC vuông tại A, đường trung tuyến CM. a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM. b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC. Chứng minh rằng ΔMAC = ΔMBD và AC = BD. c) Chứng minh rằng AC + BC > 2CM. d) Gọi K là điểm trên đoạn thẳng AM sao cho . Gọi N là giao điểm của CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.
Trả lời (1)
-
a) Áp dụng định lý Pi-ta-go vào tamgiac vuông ABC có:
AB2 = BC2 - AC2
Thay: AB2 = 102 - 62 = 100 - 36 = 64
Nên AB = 8 ( cm )
Ta có: CM là đường trung tuyến
=> AM = BM
Mà AM + BM = AB
=> 2.BM = 8 <=> BM = 4 (cm)
Vậy BM = 4 (cm)
b) Xét 2 tam giác AMC và BMD, có:
AM = BM (vì CM là trung tuyến)
CM = DM (gt)
góc AMC = góc BMD (đ.đ)
=> tamgiac AMC = tamgiac BMD ( c.g.c)
Nên AC = BD (2 cạnh tương ứng)
c) Ta có: CD = CM + DM
Mà CM = DM ( gt )
=> CD = 2.CM
Trong tamgiac BDC có:
BC + BD > CD ( bất đẳng thức tamgiac)
Hay BC + BD > 2.CM (cmt)
Mà BD = AC
=> BC + AC > 2.CM ( đpcm)
d) Thêm đề: Gọi K là điểm nằm trên đoạn thẳng AM sao cho AK = \(\dfrac{2}{3}\) AM
Vì AK = \(\dfrac{2}{3}\) AM
=> K là trọng tâm
Hay CM đi qua K là đường trung tuyến
=> AN = DN
Mà N \(\in\) AD
=> BN là đường trung tuyến (1)
Mặt khác: BM = AM => DM là đường trung tuyến (2)
Ngoài ra I là giao điểm BN và DM (3)
Từ (1) (2) (3)
=> I là trọng tâm tamgiac DAB
=> \(ID=\dfrac{2}{3}DM\)
Hay: \(DM=\dfrac{3}{2}ID\)
Mà: CD = 2.DM
=> \(CD=2.\dfrac{3}{2}ID=3.ID\)(đpcm)
bởi Hồng Vân Nguyễn 19/12/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời