Tìm số nguyên x, y, z biết x+y+z=xyz
Tìm \(x;y;z\ge1\)(\(\in Z\)), biết:
\(x+y+z=x\cdot y\cdot z\)
Trả lời (1)
-
Không mất tính tổng quát ta giả sử \(x\ge y\ge z\ge1\)
\(\Rightarrow xyz=x+y+z\le3x\)
\(\Rightarrow yz\le3\)
\(yz=\left\{1,2,3\right\}\)
Với \(yz=1\)
\(\Rightarrow\left\{{}\begin{matrix}y=1\\z=1\end{matrix}\right.\) thế vô phương trình ban đầu được.
\(x=2+x\left(l\right)\)
Với \(yz=2\)
\(\Rightarrow\left\{{}\begin{matrix}y=2\\z=1\end{matrix}\right.\) thế ngược lại phương trình đầu được
\(2x=1+2+x\)
\(\Leftrightarrow x=3\)(nhận)
Với \(yz=3\)
\(\Rightarrow\left\{{}\begin{matrix}y=3\\z=1\end{matrix}\right.\) thế ngược lại phương trình đầu ta được
\(3x=1+3+x\)
\(\Leftrightarrow x=2\left(l\right)\)(loại vì ta đã giả sử x lớn nhất trong 3 số)
Vì vai trò của x,y,z là như nhau nên ta có thể hoán đổi vị trí của x,y,z
Vậy ta có bộ x,y,z cần tìm là: \(\left(x,y,z\right)\left\{1,2,3;1,3,2;2,1,3;2,3,1;3,1,2;3,2,1\right\}\)
bởi Dương Long 22/01/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời