ADMICRO

Thực hiện phép tính A=(2/5-2/9+2/11)/(7/5-7/9+7/11):(1/3-1/4+1/5)/...

1.Thực hiện phép tính sau một cách hợp lí:

A=\(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\) : \(\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)

2.Chứng minh rằng:Với mỗi x, y \(\in\) Q. Ta luôn có\(|x+y|\)\(\le\)\(|x|\)+\(|y|\)

Khi nào ta có đẳng thức?

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • 1. Giải:

    Gọi A =M : N

    Ta có:M=\(\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}\)= \(\dfrac{2.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}{7.\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{11}\right)}\)=\(\dfrac{2}{7}\)

    N=\(\dfrac{\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)=\(\dfrac{2.\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}{7.\left(\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{10}\right)}\)=\(\dfrac{2}{7}\)

    Vậy A=M: N \(\Rightarrow\)A=\(\dfrac{2}{7}\):\(\dfrac{2}{7}\)=\(\dfrac{2}{7}\).\(\dfrac{7}{2}\)=\(\dfrac{2.7}{7.2}\)=1

    2. Giải:

    Với mọi x \(\in\)Q, ta luôn có \(x\) \(\le\) \(|x|\)(dấu bằng xảy ra khi x\(\ge\)0)

    a)Nếu \(x+y\)\(\ge\)0 thì\(|x+y|=x+y\).

    \(x\le|x|,y\le|y|\)với mọi x, y\(\in\)Q nên:\(|x+y|=x+y\le|x|+|y|\)

    b)Nếu x+y < 0 thì\(|x+y|=-\left(x+y\right)\)=\(-x-y\)

    Mà -x\(\le\)\(|x|\), -y\(\le\)\(|y|\) nên: \(|x+y|\)= -x-y\(\le\)\(|x|+|y|\)

    Vậy với mọi x, y\(\in\)Q ta đều có:\(|x+y|\le|x|+|y|\). Dấu bằng xảy ra khi x, y cùng dấu hoặc ít nhất có một số bằng 0.

      bởi Trần Tư 27/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 4_1603079338.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-10-31 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)