YOMEDIA
NONE

Số nào là nghiệm,số nào không phải là nghiệm của đa thức R(x)=x^4+2x^3-x^2+x-3?

Trong tập hợp các số {1;2;-1;0},số nào là nghiệm,số nào không phải là nghiệm của đa thức R(x)=x4+2x3-x2+x-3 ?

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giải:

    \(*)\) Với \(x=1\) ta có:

    \(R\left(x\right)=1^4+2.1^3-1^2+1-3\)

    \(=1+2-1+1-3=0\)

    \(\Rightarrow1\) là nghiệm của đa thức \(R\left(x\right)\)

    \(*)\) Với \(x=2\) ta có:

    \(R\left(x\right)=2^4+2.2^3-2^2+2-3\)

    \(=16+16-4+2-3=27\)

    \(\Rightarrow2\) không là nghiệm của đa thức \(R\left(x\right)\)

    \(*)\) Với \(x=-1\) ta có:

    \(R\left(x\right)=\left(-1\right)^4+2.\left(-1\right)^3-\left(-1\right)^2+\left(-1\right)-3\)

    \(=1+\left(-2\right)-1+\left(-1\right)-3=-6\)

    \(\Rightarrow-1\) là không là nghiệm của đa thức \(R\left(x\right)\)

    \(*)\) Với \(x=0\) ta có:

    \(R\left(x\right)=0^4+2.0^3-0^2+0-3\)

    \(=0+0-0+0-3=0-3=-3\)

    \(\Rightarrow0\) không là nghiệm của đa thức \(R\left(x\right)\)

    Vậy trong các số trên, chỉ có \(1\) là nghiệm của đa thức \(R\left(x\right)\)

      bởi Phạm vân Khánh 13/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON