YOMEDIA
NONE

Có tồn tại hai số nguyên dương a,b khác nhau sao cho 1/a-1/b=1/(a-b) ?

Có tồn tại hai số nguyên dương a,b khác nhau sao cho :

\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Giả sử tồn tại a,b thỏa mãn đề bài

    Vì : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\Rightarrow\left(b-a\right)\left(a-b\right)=ab\)

    \(\Rightarrow-\left(a-b\right)\left(a-b\right)=ab\Rightarrow-\left(a-b\right)^2=ab\)

    Vì a,b nguyên dương \(\Rightarrow ab>0\)

    Mà : \(\left(a-b\right)^2\le0\forall a,b\)

    \(\Rightarrow-\left(a-b\right)^2\le0\Rightarrow\) Mâu thuẫn => G/s sai

    Vậy không tồn tại 2 số a,b thỏa mãn đề bài

      bởi Nguyễn Tiên 11/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON