Chứng minh tam giác MHK vuông cân biết tam giác ABC vuông cân tại A có trung tuyến AM
cho tam giác ABC vuông cân tại A , trung tuyến AM. E\(\in\) BC, BH vuông góc với AE, CK vuông góc với AE (H,K thuộc AE). Chứng minh tam giác MHK vuông cân
Trả lời (1)
-
Xét tam giác $BAH$ và $ACK$ có:
\(\left\{\begin{matrix} \widehat{BHA}=\widehat{AKC}=90^0\\ \widehat{ABH}=\widehat{CAK}=90^0-\widehat{BAH}\end{matrix}\right.\)
\(\Rightarrow \triangle BAH\sim \triangle ACK(g.g)\)
\(\Rightarrow \frac{AH}{CK}=\frac{BA}{AC}=1\) (do tam giác $ABC$ cân tại $A$)
\(\Rightarrow AH=CK\)
Mặt khác từ tam giác đồng dạng trên cũng suy ra \(\widehat{BAH}=\widehat{ACK}(1)\)
Tam giác $BAC$ vuông nên đường trung tuyến đối diện cạnh huyền bằng một nửa cạnh huyền \(\Rightarrow MA=MC\)
Mặt khác, $BAC$ cân tại $A$ nên trung tuyến $AM$ đồng thời là đường cao. Như vậy, tam giác $BAM$ vuông tại $M$ và góc $B=45^0$ nên là tam giác vuông cân
\(\Rightarrow \widehat{BAM}=45^0=\widehat{BCA}(2)\)
Lấy \((1)-(2)\Rightarrow \widehat{MAH}=\widehat{MCK}\)
Xét tam giác $MAH$ và $MCK$ có:
\(\left\{\begin{matrix} \widehat{MAH}=\widehat{MCK}\\ MA=MC\\ AH=CK\end{matrix}\right.\Rightarrow \triangle MAH=\triangle MCK(c.g.c)\)
\(\Rightarrow MH=MK; \widehat{AMH}=\widehat{CMK}\)
\(\Rightarrow \widehat{AMH}+\widehat{HME}=\widehat{CMK}+\widehat{HME}\)
\(\Leftrightarrow \widehat{AMC}=\widehat{HMK}\Leftrightarrow HMK=90^0\)
Tam giác $HMK$ có góc $M=90^0$ và $MH=MK$ nên là tam giác vuông cân.
bởi Ronaldo Hà 09/04/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời