Chứng minh tam giác DKE đều biết K là giao điểm của đoạn thẳng DM và EN
Cho tam giác ABC cân tại A và \(\widehat{BAC=120^0}\) , trên cạnh BC lấy điểm D và E sao cho BD = CE ( D nằm giữa B và E)
a) C/m \(\Delta ABD=\Delta ACE\)
b) Kẻ \(DM\perp AB\left(M\in AB\right)\)và \(EN\perp AC\left(N\in AC\right)\)
c) C/m AN= AM.
d) Gọi K là giao điểm của đoạn thẳng DM và EN. C/m tam giác DKE đều
Trả lời (1)
-
a) Xét \(\Delta ADB\) và \(\Delta AEC\) ,có :
AB = AC ( \(\Delta ABC\) cân tại A )
\(\widehat{ABC}=\widehat{ACB}\) ( \(\Delta ABC\) cân tại A )
BD = CE ( gt )
=> \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
b) Vẽ hình
c) Xét \(\Delta AMD\) và \(\Delta ANE\) ,có :
AD = AE ( \(\Delta ABD=\Delta ACE\) )\(\widehat{MAD}=\widehat{NAE}\) ( \(\Delta ABD=\Delta ACE\) )
\(\widehat{AMD}=\widehat{ANE}=90^0\)
=> \(\Delta AMD=\Delta ANE\) ( cạnh huyền - góc nhọn )
=> AM = AN ( đpcm )
d)MK viết các bước rồi bn tự trình bày nha !
B1 : C/m AK là tia phân giác của góc A )
=> \(\widehat{MAK}=\widehat{NAK}=60^0\)
=> \(\widehat{MKA}=\widehat{NKA}=30^0\)
=> \(\widehat{MAK}=60^0\)
B2 : Tính \(\widehat{B}=\widehat{C}=\dfrac{180^0-120^0}{2}=30^0\)
=> \(\widehat{KDE}=\widehat{KED}=60^0\)
=> \(\Delta DKE\) đều
bởi Nguyễn Phương Anh 13/12/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời