YOMEDIA
NONE

Chứng minh nếu có dãy tỉ số a1/a2=a2/a3=...a2017/a2018 suy ra đẳng thức

Chứng minh rằng: Nếu có dẫy tỉ số bằng nhau:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2017}}{a_{2018}}\)

=> Đẳng thức : \(\dfrac{a_1}{a_{2018}}=\left(\dfrac{a_1+a_2+...+a_{2017}}{a_2+a_3+..+a_{2018}}\right)^{2017}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ta có : \(\dfrac{a_1}{a_{2018}}=\left(\dfrac{a_1+a_2+...+a_{2017}}{a_2+a_3+...+a_{2018}}\right)^{2017}\)

    áp dụng dảy tỉ số bằng nhau ta có :

    \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2017}}{a_{2018}}=\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\)

    \(\Rightarrow\left(\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\right)^{2017}=\left(\dfrac{a_1}{a_2}\right)^{2017}\)

    mà ta có : \(\dfrac{a_1}{a_{2018}}=\dfrac{a_1a_2a_3...a_{2017}}{a_2a_3a_4...a_{2018}}=\left(\dfrac{a_1}{a_2}\right)^{2017}\)

    \(\Rightarrow\dfrac{a_1}{a_{2018}}=\left(\dfrac{a_1+a_2+a_3+...+a_{2017}}{a_2+a_3+a_4+...+a_{2018}}\right)^{2017}\left(đpcm\right)\)

      bởi Bùi Mỹ Duyên 28/01/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON