Chứng minh không có giá trị x để P=x^2y^2-x^3-2xy^2+2 và Q=x^3+2xy^2-2xy-1 cùng âm
Cho hai đa thức : P=x2y2-x3-2xy2+2 Và Q=x3+2xy2-2xy-1
Chứng minh rằng không tần tại giá trị nào của x,y để hai đa thức P và Q cùng có giá trị âm
Trả lời (1)
-
Ta có: \(P+Q=x^2y^2-x^3-2xy^2+2+x^3+2xy^2-2xy-1=x^2y^2-2xy+1=\left(xy-1\right)^2\ge0\forall x;y\in R\)
=> Trong P và Q luôn có ít nhất 1 đa thức có giá trị lớn hơn 0 với mọi x,y thuộc tập R
Vậy không tồn tại x;y để P và Q cùng âm
bởi Hoàng Thảo 18/01/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời