Chứng minh HE vuông góc với AB biết AH vuông góc với BC, trên BC lấy D sao cho HB = HD
Cho tam giác ABC : Â = 90 độ, C = 30 độ, AH vuông góc với BC, trên BC lấy D sao cho HB = HD, kẻ CE vuông góc với AD (E thuộc AD) .Chứng minh :
a/ tam giác ABD đều, D là trung điểm of BC
b/ HE vuông góc với AB
Trả lời (1)
-
giải: a)
*) Có: AH _l_ BC (gt)
=> AH là đường cao của tam giác ABD
mặt khác: HB = HD => AH là trung tuyến của tam giác ABC
=> Tam giác ABC cân tại A (1)
Ta có: \(\widehat{B}=180^o-\widehat{A}-\widehat{B}=180 ^o-90^o-30^o=60^o\) (2)
Từ (1) và (2) => tam giác ABD đều (đpcm)
*) Tam giác ABD đều => BD = AD (3)
\(\Delta ACD\) có: \(\widehat{ADC}=180^o-\widehat{ADB}=180^o-60^o=30^o\)
=> \(\widehat{DAC}=180^o-\widehat{ADC}-\widehat{ACD}=180^o-120^o-30^o=30^o=\widehat{ACD}\)
=> tam giác ACD cân tại D => AD = CD (4)
Từ (3) và (4) => BD = CD => D là trung điểm của BC (đpcm)
b) Có: \(\widehat{HDE}=\widehat{ADC}=120^o\) (đối đỉnh)
tam giác ABD cân có AH là đường cao => AH cx là dd` p/g
=> góc HAD = 60o : 2 = 30o
Xét 2 tam giác vuông: \(\Delta HDA\) và \(\Delta EDC\) có:
DA = DC (đã cm)
\(\widehat{D_1}=\widehat{D_2}\) (đối đỉnh)
=> t/g HDA = t/g EDC (cạnh huyền- góc nhọn)
=> HD = ED => tam giác HDE cân tại D
=> \(\widehat{DHE}=\widehat{DEH}=\dfrac{180^o-\widehat{HDE}}{2}=\dfrac{180^o-120^o}{2}=30^o\)
Có: \(\widehat{HAD}=\widehat{DEH}=30^o\) mà 2 góc này so le trong
=> HE // AC
lại có: AC _l_ AB => HE _l_ AB (đpcm)
bởi Bùi Duy Trường 28/02/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời