Chứng minh HB+HC < AB+AC biết tam giác ABC cân tại A có AM là phân giác góc A
Cho tam giác ABC cân tại A , AM là phân giác của  ( M thuộc BC)
a) Cm tam giác ABM và tam giác ACM
b)Gọi BK , CI là đường cao của tam giác ABC cắt nhau tại H . CM tam giác BKC và tam giác CIB
c) CM : H thuộc AM
d) CM : HB + HC < AB + AC
Trả lời (1)
-
a) Xét \(\Delta\)ABM và \(\Delta\)ACM có:
AB = AC (Vì \(\Delta\)ABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\) (AM là phân giác của góc A)
AM là cạnh chung
\(\Rightarrow\)\(\Delta\)ABM = \(\Delta\)ACM (c-g-c)
b) Xét \(\Delta\)BKC vuông tại K và \(\Delta\)CIB vuông tại C có:
\(\widehat{KBA}=\widehat{ICB}\)(\(\Delta\)ABC cân tại A)
BC là cạnh chung
\(\Rightarrow\)\(\Delta\)BKC = \(\Delta\)CIB (ch + 1gn)
c) Vì \(\Delta\)ABM = \(\Delta\)ACM (cmt)
\(\Rightarrow\) \(\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)
Mà \(\widehat{AMB}+\widehat{AMC}\) = 180o (M\(\in\)BC)
\(\Rightarrow\) \(\widehat{AMB}+\widehat{AMC}\) = 180o
Hay \(2\widehat{AMB}\) = 180o
\(\Rightarrow\) \(\widehat{AMB}\) = 90o
\(\Rightarrow\) AM\(\perp\)BC
\(\Rightarrow\) H \(\in\) AM (Vì 3 đường cao cắt nhau tại 1 điểm)
d) Vì AB + AC > BC
HB + HC > BC
\(\Rightarrow\) AB + AC - HB - HC > BC - BC
\(\Rightarrow\) AB + AC - HB - HC > 0
\(\Rightarrow\) AB + AC > HB + HC
bởi Nguyễn Thảo 28/03/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời