Chứng minh BI=CI biết tam giác ABC cân tại A và AI vuông góc BC
bài 1: Cho tam giác ABC cân tại A kẻ AI vuông góc với BC (I thuộc BC) . Lấy điểm E thuộc AB và điểm F thuộc AC sao cho AE=AF. Chứng minh rằng:
a, BI=CI
b,Tam giác IEF là tam giác cân
c,EF song song với BC
mình cần gấp lắm
Trả lời (1)
-
a) Xét \(\Delta ABI,\Delta ACI\) có :
\(\widehat{ABI}=\widehat{ACI}\) (ΔABC cân tại A)
\(AB=AC\) (ΔABC cân tại A)
\(\widehat{AIB}=\widehat{AIC}\left(=90^o\right)\)
=> \(\Delta ABI=\Delta ACI\) (cạnh huyền - góc nhọn)
=> \(BI=CI\) (2 cạnh tương ứng)
b) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{ΔABC cân tại A}\right)\\AE=AF\left(gt\right)\end{matrix}\right.\)
Lại có : \(\left\{{}\begin{matrix}E\in AB\\F\in AC\end{matrix}\right.\left(gt\right)\Rightarrow\left\{{}\begin{matrix}AB=AE+BE\\AC=AF+FC\end{matrix}\right.\)
Nên : \(AB-AE=AC-AF\)
\(\Leftrightarrow BE=CF\)
Xét \(\Delta EBI,\Delta FCI\) có :
\(BI=CI\)(cm câu a)
\(\widehat{EBI}=\widehat{FCI}\) (ΔABC cân tại A)
\(BE=CF\left(cmt\right)\)
=> \(\Delta EBI=\Delta FCI\left(c.g.c\right)\)
=> \(IE=IF\) (2 cạnh tương ứng)
=> ΔIEF cân tại I
c) Xét \(\Delta AEF\) có :
\(AE=AF\left(gt\right)\)
=> \(\Delta AEF\) cân tại A
Ta có : \(\widehat{AEF}=\widehat{AFE}=\dfrac{180^{^O}-\widehat{A}}{2}\) (Tổng 3 góc của 1 tam giác) (1)
Xét \(\Delta ABC\) cân tại A có :
\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^{^O}-\widehat{A}}{2}\) (Tổng 3 góc của 1 tam giác) (2)
Từ (1) và (2) => \(\widehat{AEF}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{A}}{2}\right)\)
Mà thấy: 2 góc này ở vị trí đồng vị
Do đó, \(EF//BC\left(đpcm\right)\).
bởi Trần Bảo 25/02/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời