Chứng minh BH=AK biết BH và CK vuông góc với AE tại H và K
Cho \(\Delta ABC\) vuông tại A có AB = AC. Gọi M là trung điểm của BC, trên đoạn CM lấy bất kì điểm E. Kẻ BH và CK vuông góc với AE tại H và K.
a, Tính số đo góc B và góc C
b, C/minh: BH = AK
c, C/minh: MA = MB
d, C/minh: \(\Delta MBH=\Delta MAK\)
e, \(\Delta MHK\) là tam giác gì?
Trả lời (1)
-
Chứng minh :
a) △ABC vuông tại A có AB = AC ⇒ △ABC vuông cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=\dfrac{180^o-\widehat{A}}{2}=\dfrac{180^o-90^o}{2}=\dfrac{90^o}{2}=45^o\)
b) Ta có: \(\widehat{ABH}+\widehat{BAH}+\widehat{AHB}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{ABH}+\widehat{BAH}+90^o=180^o\)
\(\Rightarrow\widehat{ABH}+\widehat{BAH}=90^o\)
\(\Rightarrow\widehat{ABH}=90^o-\widehat{BAH}\) ( 1)
Ta có:
\(\widehat{KAC}+\widehat{ACK}+\widehat{CKA}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{KAC}+\widehat{ACK}+90^o=180^o\)
\(\Rightarrow\widehat{KAC}+\widehat{ACK}=90^o\)
Có:
\(\widehat{BAH}+\widehat{KAC}=90^o\)
\(\Rightarrow\widehat{KAC}=90^o-\widehat{BAH}\) (2)
Từ (1) và (2) ⇒ \(\widehat{KAC}=\widehat{ABH}\)
Có: \(\widehat{ABH}+\widehat{BAH}=90^o\)
\(\Rightarrow\widehat{BAH}=90^o-\widehat{ABH}\)
\(\widehat{KAC}+\widehat{ACK}=90^o\)
\(\Rightarrow\widehat{ACK}=90^o-\widehat{KAC}\)
Mà \(\widehat{KAC}=\widehat{ABH}\) ( cmt)
\(\Rightarrow\widehat{BAH}=\widehat{ACK}\)
Xét △BHA và △AKC có:
\(\widehat{ABH}=\widehat{KAC}\text{ ( cmt )}\)
AB = AC ( gt)
\(\widehat{BAH}=\widehat{ACK}\text{ ( cmt )}\)
⇒ △BHA = △AKC ( g.c.g)
⇒ BH = AK ( tương ứng )
c ) Xét △AMB và △AMC có:
AB = AC ( gt)
AM - cạnh chung
BM = MC ( gt )
⇒ △AMB = △AMC ( c.c.c )
⇒ \(\widehat{ABM}=\widehat{ACM}\text{ ( tương ứng )}\)
Vì △ABC vuông cân tại A
⇒ \(\widehat{ABC}+\widehat{ACB}=90^o\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=45^o\)
Có : △AMB = △AMC ( cmt )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\text{ ( tương ứng )}\)
Mà \(\widehat{AMB}+\widehat{AMC}=180^o\text{ ( kề bù )}\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{BAM}+90^o+45^o=180^o\)
\(\Rightarrow\widehat{BAM}=180^o-90^o-45^o\)
\(\Rightarrow\widehat{BAM}=45^o\)
mà \(\widehat{MBA}=45^o;\widehat{BMA}=90^o\)
⇒ △MBA vuông cân tại M
⇒ MA = MB
d) Có \(\widehat{HBE}+\widehat{BEH}+\widehat{EHB}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{HBE}+\widehat{BEH}+90^o=180^o\)
⇒ \(\widehat{HBE}+\widehat{BEH}=180^o-90^o\)
\(\Rightarrow\widehat{HBE}+\widehat{BEH}=90^o\) (3 )
Có:
\(\widehat{MEA}+\widehat{EAM}+\widehat{AME}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{MEA}+\widehat{EAM}+90^o=180^o\)
\(\Rightarrow\widehat{MEA}+\widehat{EAM}=90^o\) ( 4)
Mà \(\widehat{BEH}=\widehat{MEA}\text{ (đối đỉnh )}\)
Từ (3) và (4) ⇒ \(\widehat{HBE}=\widehat{EAM}\text{ hay }\widehat{HBM}=\widehat{KAM}\)
Xét △BMH và △AMK có:
BH = AK ( cmt )
\(\widehat{HBM}=\widehat{KAM}\text{ ( cmt)}\)
BM = AM ( cmt )
⇒ △BMH = △AMK( c.g.c)
⇒ KM = HM ( tương ứng ) ( 5)
⇒ \(\widehat{BMH}=\widehat{AMK}\text{ ( tương ứng )}\)
Mà \(\widehat{AMK}+\widehat{KME}=90^o\)
\(\Rightarrow\widehat{BMH}+\widehat{KME}=90^o\)
\(\Rightarrow\widehat{HMK}=90^o\) (6)
Từ (5) và ( 6 ) ⇒ △MHK là tam giác vuông cânbởi Phạm Hồng Anh 28/02/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời