YOMEDIA
NONE

Chứng minh BC là tia phân giác góc ABD biết tam giác ABD có AB=AD

Cho ΔABD có AB=DB. C là trung điểm của AD. Chứng minh rằng:

a, BC là tia phân giác của \(\widehat{ABD}\)

b, BC ⊥ AD

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Hỏi đáp Toán

    a) Xét \(\Delta BAC\)\(\Delta BDC\) có:

    \(BA=BD\left(gt\right)\)

    \(BC:\) cạnh chung

    \(AC=CD\) ( C là trung điểm của AD )

    \(\Rightarrow\Delta BAC=\Delta BDC\left(c.c.c\right)\)

    \(\Rightarrow\widehat{ABC}=\widehat{DBC}\) ( hai góc tương ứng )

    \(\Rightarrow\) BC là tia phân giác của \(\widehat{ABD}\)

    b) Ta có \(\Delta BAC=\Delta BDC\) ( câu a )

    \(\Rightarrow\widehat{BCA}=\widehat{BCD}\) ( hai góc tương ứng )

    \(\widehat{BCA}+\widehat{BCD}=180^o\) ( kề bù )

    \(\Rightarrow\widehat{BCA}=\widehat{BCD}=\dfrac{180^o}{2}=90^o\)

    Hay \(BC\perp AD\)

      bởi Phạm Đình 27/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON