Chứng minh ba điểm A, G, H thẳng hàng biết G là trọng tâm của tam giác ABC
1.Cho tam giác ABC cân tại A, đường cao AH. Biết AB=10cm, BC=12 cm
a,C.m \(\Delta\)ABH=\(\Delta\)ACH
b,Tính độ dài đoạn thẳng AH
c, Coi G là trọng tâm của tam giác ABC. Chứng minh \(\Delta\)ABG=\(\Delta\)ACG
d,Chứng minh ba điểm AGH thẳng hàng
2.Cho \(\Delta\)ABC vuông tại A có AB=9cm, AC=12cm
a, Tính BC
b,Tia phân giác của góc B cắt Bc tại D.Kẻ DM\(\perp\)BC tại M. C.m \(\Delta\)ABD=\(\Delta\)MBD
c, Gọi giao điểm của DM và AB là E.CM \(\Delta\)BEC cân
Giúp mik với các bạn
Trả lời (1)
-
Bài 1:
Giải:
a) Xét tam giác ABH và tam giác ACH, có:
AH là cạnh chung
\(\widehat{AHB}=\widehat{AHC}=90^0\left(gt\right)\)
\(AB=AC\) (Tam giác ABC cân tại A)
\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-cgv\right)\)
b) Ta có tam giác ABC cân tại A có AH là đường cao
Suy ra AH đồng thời là đường trung tuyến của tam giác ABC
\(\Leftrightarrow BH=\dfrac{1}{2}BC=\dfrac{1}{2}.12=6\left(cm\right)\)
Áp dụng định lý Pitago vào tam giác ABH, có:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2\)
\(\Leftrightarrow AH=\sqrt{AB^2-BH^2}\)
\(\Leftrightarrow AH=\sqrt{10^2-6^2}\)
\(\Leftrightarrow AH=8\left(cm\right)\)
c) Ta có tam giác ABC cân tại A có AH là đường cao
Suy ra AH đồng thời là đường phân giác của tam giác ABC
\(\Rightarrow\widehat{BAG}=\widehat{CAG}\)
Xét tam giác ABG và tam giác ACG, có:
AG là cạnh chung
\(AB=AC\) (Tam giác ABC cân tại A) \(\widehat{BAG}=\widehat{CAG}\) (Chứng minh trên) \(\Rightarrow\Delta ABG=\Delta ACG\left(c.g.c\right)\)d) Ta có G là trọng tâm của tam giác ABC
Mà AH là đường trung tuyến của tam giác ABC (Chứng minh trên)
\(\Rightarrow G\in AH\)
Suy ra ba điểm A, G, H thẳng hàng.
Vậy ...
bởi Khuất Thu Phương 25/03/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời