YOMEDIA
NONE

Chứng minh AM > AC biết tam giác ABC cân tại A có AB=10cm, BC=12cm

Cho tam giác ABC cân tại A có AB=10cm, BC=12cm và H là trung điểm của BC. Vẽ HE vuông với AB tại E và vẽ HF vuông với AC tại F

1. Tính AH

2. Chứng minh BE=CF

3. Trên tia đối của tia BC lấy điểm M bất kì. Chứng minh AM>AC

uccheGIÚP MÌNH VỚI CÁC BẠN ƠI ucche

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • A B C H M E F

    Câu a :

    Ta có :

    \(AB=10cm\)

    \(BC=12cm\Rightarrow HB=HC=6cm\)

    \(AH=?\)

    Theo định lý py - ta - gp ta có :

    \(AH^2=AB^2-HB^2\)

    \(AH^2=10^2-6^2\)

    \(AH^2=64\)

    \(\Rightarrow AH=8cm\)

    Câu b :

    Xét \(\Delta\)vuông \(HEB\) \(HFC\) có :

    \(HB=HC\left(gt\right)\)

    \(\widehat{HEB}=\widehat{HFC}\left(90^0\right)\)

    \(\Rightarrow\Delta HEB=\Delta HFC\left(ch-gv\right)\)

    \(\Rightarrow BE=CF\) ( 2 cạnh tương ứng )

    Câu c :

    Ta có :

    \(AB=AC=10cm\)

    \(BM=BC=12cm\)

    \(\Leftrightarrow BH=12+6=18cm\)

    Theo định lý py - ta - go ta có :

    \(AM^2=AH^2+MH^2\)

    \(AM^2=8^2+18^2\)

    \(AM^2=388\)

    \(\Rightarrow AM=\sqrt{388}\approx20\)

    \(\Rightarrow AM>AC\)

      bởi Nguyễn Thị Thảo Nguyên 08/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON