Chứng minh AI vuông góc BC tại H biết tam giác ABC cân tại A, BC vuông góc với AC
8.Cho tam giác ABC cân tại A, kẻ BC vuông góc với AC và kẻ CE vuông góc với AB, BD và CE cắt nhau tại I.
a/Chứng minh tam giác BDC=tam giác CEB.
b/So sánh góc IBE và góc ICD.
c/Đường thẳng AI cắt BC tại H. Chứng minh AI vuông góc BC tại H.
Trả lời (1)
-
b) \(\widehat{IBE}=\widehat{EBC}-\widehat{IBC}\)
\(\widehat{ICD}=\widehat{DCB}-\widehat{ICB}\)
Mà \(\widehat{EBC}=\widehat{DCB}\) ( \(\Delta ABC\) cân tại A )
\(\widehat{IBC}=\widehat{ICB}\) ( \(\Delta CEB=\Delta BDC\) )
=> \(\widehat{IBE}=\widehat{ICD}\)
c) Ta có :
AE = AB - EB
AD = AC - DC
Mà AB = AC ; EB = DC
=> AE = AD
Xét \(\Delta AEI\) và \(\Delta ADI\) ,có :
AI : cạnh chung
AE = AD (c/m t )
\(\widehat{AEI}=\widehat{ADI}=90^0\)
=> \(\Delta AEI=\Delta ADI\) (cạnh huyền - cạnh góc vuông )
=> \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )
Xét \(\Delta AHB\) và \(\Delta AHC\) , có :
AH là cạnh chung
AB = AC
\(\widehat{BAH}=\widehat{CAH}\) ( c/m t )
=> \(\Delta AHB\) = \(\Delta AHC\) ( c.g.c )
=> \(\widehat{AHB}=\widehat{AHC}\) ( 2 góc tương ứng )
mà chúng ở vị trí kề bù
=> \(\widehat{AHB}=\widehat{AHC}=\frac{180^0}{2}=90^0\)
=> AH \(\perp BC\) tại H
bởi Nguyễn Phương 08/05/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
23/11/2022 | 1 Trả lời
-
a) Hai góc cùng phụ một góc thứ ba thì .?.
b) Nếu hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì ?
23/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời
-
22/11/2022 | 1 Trả lời