Chứng minh AF^2 + BG^2 + CH^2 = BF^2 + CG^2 + AH^2 biết OF ⊥ AB, OG ⊥ BC
1.Cho 1 điểm O ở trong tam giác ABC .Từ O dựng OF ⊥ AB, OG ⊥ BC , OH ⊥ AC Chứng minh rằng AF^2 + BG^2 + CH^2 = BF^2 + CG^2 + AH^2 làm wn giúp mk vs!help me
Trả lời (1)
-
Từ O vẽ các đoạn thẳng OA;OB;OC
Áp dụng định lý pytago vào :
+) \(\Delta\) AFO có :
AO2 = AF2 + OF2
=> AF2 = AO2 - OF2 (1)
+) \(\Delta\) BOG có :
BO2 = BG2 + OG2
=> BG2 = BO2 - OG2 (2)
+) \(\Delta\) COH có :
OC2 = OH2 + HC2
=> CH2 = OC2 - OH2 (3)
+) \(\Delta\)BFO có :
OB2 = OF2 + FB2
=> BF2 = OB2 - OF2 (4)
+) \(\Delta\) CGO có :
OC2 = OG2 + CG2
=> CG2 = OC2 - OG2 (5)
+) \(\Delta\) AOH có :
OA2 = OH2 + AH2
=> AH2 = OA2 - OH2 (6)
Từ (1), (2), (3) ta có :
AF2 + BG2 + CH2 = AO2 - OF2 + BO2 - OG2 + OC2 - OH2
= ( OB2 - OF2 ) + ( OC2 - OG2 ) + ( OA2 - OH2 ) (*)
Thay (4),(5),(6) vào (*) ta có :
AF2 + BG2 + CH2 = BF2 + CG2 + AH2
=>ĐPCM
bởi Trần Thanh phong 11/12/2019Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời