YOMEDIA
NONE

Chứng minh AE=AF biết tam giác ABC cân tại A có góc BAC=40 độ, đường cao AH

Cho tam giác ABC cân tại A, góc BAC = 40độ , đường cao AH. Các điểm E; F theo thứ tự thuộc các đoạn thẳng AH; AC sao cho góc EBA = góc FBC = 30độ . C/minh: AE = AF

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: trên nửa mặt phẳng bờ AB có chứa điểm G, có tam giác ABD. Nối D với F Ta có:

    Góc FBA= góc ABC-góc FBC Góc ABC =(1800 - BAC)/2=1400 :2=700

    => góc FBC=góc EBA=300 => FBA= 700 -300 =400

    =>góc FBA= góc BAI=400 =>tam giác AFB cân tại F

    =>FA=FB

    Xét tam giác BDF và tam giác ADF có:

    DF cạnh chung

    FB=FA

    BD=AD

    =>tam giác BDF= tam giác ADF(c-c-c)

    =>góc ADF= góc BDF = góc ABD/2= 300 Mà góc EBA= 30 0

    =>góc ADF= góc ABE=300

    Ta có tam giác ABC cân tại A co AH là đường cao =>AD la p.giác của tam giác ABC

    =>góc BAH= góc CAH=góc BAC/2=200 => góc DAF= góc BAE=200

    Xét tam giác BAE và tam giác DAI có

    Góc DAI= góc BAD

    AB=AD

    Góc ADF= góc ABD

    =>tam giác BAD = tam giác DAF(g-c-g)

    =>AE=AF ( cặp cạnh tương ứng)

      bởi Huỳnh Thị Ngọc Thảo 10/04/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON