Bài 62* trang 145 sách bài tập toán 7 tập 1
Cho tam giác ABC. Vẽ về phía ngoài tam giác ABC các tam giác vuông tại A là ABD, ACE có AB = AD, AC = AE. Kẻ AH vuông góc với BC, DM vuông góc với AH, EN vuông góc với AH. Chứng minh rằng :
a) DM = AH
b) MN đi qua trung điểm của DE
Trả lời (1)
-
a) Ta có ˆBAH+ˆBAD+ˆDAM=180∘BAH^+BAD^+DAM^=180∘ (kề bù)
Mà ˆBAD=90∘⇒ˆBAH+ˆDAM=90∘BAD^=90∘⇒BAH^+DAM^=90∘ (1)
Trong tam giác vuông AMD, ta có:
ˆAMD=90∘⇒ˆDAM+ˆADM=90∘(2)AMD^=90∘⇒DAM^+ADM^=90∘(2)
Từ (1) và (2) suy ra: ˆBAH=ˆADMBAH^=ADM^
Xét hai tam giác vuông AMD và BHA, ta có:
ˆAMD=ˆBAH=90∘AMD^=BAH^=90∘
AB = AD (gt)
ˆBAH=ˆADMBAH^=ADM^ (chứng minh trên)
Suy ra: ∆AMD = ∆BHA (cạnh huyền, góc nhọn)
Vậy: AH = DM (2 cạnh tương ứng) (3)
b) Ta có: ˆHAC+ˆCAE+ˆEAN=180∘HAC^+CAE^+EAN^=180∘ (kề bù)
Mà ˆCAE=90∘(gt)⇒ˆHAC+ˆEAN=90∘CAE^=90∘(gt)⇒HAC^+EAN^=90∘ (4)
Trong tam giác vuông AHC, ta có:
ˆAHC=90∘⇒ˆHAC+ˆHCA=90∘(5)AHC^=90∘⇒HAC^+HCA^=90∘(5)
Từ (4) và (5) suy ra: ˆHCA=ˆEANHCA^=EAN^
Xét hai tam giác vuông AHC và ENA, ta có:
ˆAHC=ˆENA=90∘AHC^=ENA^=90∘
AC = AE (gt)
ˆHCA=ˆEANHCA^=EAN^ (chứng minh trên)
Suy ra: ∆AHC = ∆ENA (cạnh huyền, góc nhọn)
Vậy AH = EN (2 cạnh tương ứng)
Từ (3) và (6) suy ra : DM = EN
Vì DM⊥AHDM⊥AH và EN⊥AHEN⊥AH nên DM // EN (2 đường thẳng cùng vuông góc đường thẳng thứ 3)
Gọi O là giao điểm MN và DE
Xét hai tam giác vuông DMO và ENO, ta có:
ˆDMO=ˆENO=90∘DMO^=ENO^=90∘
DM = EN (chứng minh trên)
ˆMDO=ˆNEOMDO^=NEO^ (so le trong)
Suy ra: ∆DMO = ∆ENO (g.c.g) => OD = DE
Vậy MN đi qua trung điểm của DE.
bởi Lại Thị Dung Dung 28/09/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
a) Nếu hai số đối nhau thì bình phương của chúng ;
b) Nếu hai số đối nhau thì lập phương của chúng ;
c) Lũy thừa chẵn cùng bậc của hai số đối nhau thì ;
d) Lũy thừa lẻ cùng bậc của hai số đối nhau thì.
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
26/11/2022 | 1 Trả lời