YOMEDIA

Bài 34 trang 42 sách bài tập Toán 7 tập 2

bởi Cam Ngan 25/02/2019
Bài 34 (Sách bài tập - tập 2 - trang 42)

Gọi G là trọng tâm của tam giác ABC. Vẽ điểm D sao cho G là trung điểm của AD. Chứng minh rằng :

a) Các cạnh của tam giác BGD bằng \(\dfrac{2}{3}\) các đường trung tuyến của tam giác ABC

b) Các đường trung tuyến của tam giác BGD bằng một nửa các cạnh của tam giác ABC

 

RANDOM

Câu trả lời (1)

  • A N C D M E B P G F

    a) Gọi AM , BN , CP là các đường trung tuyến của \(\Delta ABC\) . Ta có GD = AG = 2GM và GD = GM + MD nên GM = MD

    \(\Delta BMD=\Delta CMG\left(c.g.c\right)\)

    \(\Rightarrow BD=CG=\dfrac{2}{3}CP\) (1)

    Ta có \(BG=\dfrac{2}{3}BN\) (2)

    \(GD=AG=\dfrac{2}{3}AM\) (3)

    Từ (1) , (2) , (3) suy ra các cạnh của \(\Delta BGD=\dfrac{2}{3}\) các đường trung truyến của \(\Delta ABC\)

    b) Gọi CE , DF là các đường trung tuyến của \(\Delta BGD\) . Từ đây tự chứng minh \(BM=\dfrac{1}{2}BC;GE=\dfrac{1}{2}AB;DF=AN=\dfrac{1}{2}AC\)

    bởi Nguyễn Thị Hồng Trúc 25/02/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Gửi câu trả lời Hủy

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

YOMEDIA