YOMEDIA
NONE

Tìm hệ số chứa x^5 trong khai triển đa thức P(x)

Tìm hệ số chứa x5 trong khai triển đa thức P(x)= (2x+1)+ (2x+1)2+ (2x+1)3+...+(2x+1)20.

mọi người ai biết giải giúp e với ạ.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ta có : \(P\left(x\right)=\sum\limits^{20}_{k=1}\left(2x+1\right)^k=\sum\limits^{20}_{k=1}C_k^p\left(2x\right)^{k-p}\left(1\right)^k\)

    để có : \(x^5\Rightarrow k-p=5\)

    \(\Rightarrow\) hệ số của \(P\left(x\right)\) trong khai triển là : \(\sum\limits^{20}_{k=1}C^p_k\left(2\right)^{k-p}=C^0_52^5+C^1_62^5+C^2_72^5+...+C^{15}_{20}2^5\)

    \(=32\left(C^0_5+C^1_6+C^2_7+...+C^{15}_{20}\right)=32.54264=1736448\)

    vậy hệ số của \(x^5\) trong khai triển đa thức \(P\left(x\right)\)\(1736448\)

      bởi Phương Uyên 25/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON