YOMEDIA
NONE

Chứng minh với mọi số tự nhiên n ≥ 1 ta luôn có: 1+3+5+⋯+2n-1=n^2

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Với n = 1 ta có VT =VP = 1

    Suy ra đẳng thức đã cho đúng với n = 1.

    Giả sử đẳng thức đã cho đúng với n = k với k ≥ 1 ,k ∈ N*. tức là:

    1 + 3 + 5 + ... + 2k - 1 = k2 (1)

    Ta cần chứng minh đẳng thức đã cho đúng với n = k+1, tức là:

    1 + 3 + 5 + ... + (2k - 1) + (2k + 1) = (k + 1)2 (2)

    Thật vậy: VT(2) = 1 + 3 + 5 + ... + (2k - 1) + (2k + 1)

    = k2 + (2k + 1) = (k + 1)2 = VP(2)

    Vậy đẳng thức đã cho đúng với mọi n = 1.

      bởi Lê Bảo An 29/05/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON