YOMEDIA
NONE

Chứng minh rằng với mọi số tự nhiên n ≥ 1 thì A(n)=7n+3n-1 luôn chia hết cho 9

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Với n=1 ⇒ A(1)=71+3.1-1=9 ⇒ A(1)chia hết cho 9

    Giả sử A(k)chia hết cho 9 ∀k ≥ 1, ta chứng minh A(k+1)chia hết cho 9

    Thật vậy:A(k+1)=7k+1+3(k+1)1=7.7k+21k-7-18k+9 ⇒ A(k+1)=7A(k)-9(2k-1)

    Vì A(k) chia hết cho 9 và 9(2k-1) chia ết cho 9 nên A(2k+1) chia hết cho 9

    Vậy A(n) chia hết cho 9 với mọi số tự nhiên n ≥ 1

      bởi Mai Bảo Khánh 29/05/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON