YOMEDIA
NONE

Biết dãy số \((u_n)\) thỏa mãn \(|u_n-1| < \dfrac{1}{n^{3}}\) với mọi \(n\). Chứng minh rằng \(\lim u_n=1\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Vì \(\lim \dfrac{1}{{{n^3}}} = 0\) nên theo định nghĩa 1 thì

    \(\dfrac{1}{{{n^3}}}\) luôn nhỏ hơn một số dương \(A\) bé tùy ý, kể từ một số hạng nào đó trở đi.

    (\(\dfrac{1}{{{n^3}}} < A \Leftrightarrow {n^3} > \dfrac{1}{A} \Rightarrow n > \sqrt[3]{{\dfrac{1}{A}}}\), nghĩa là từ số hạng thứ \(n\) mà \(n > \sqrt[3]{{\dfrac{1}{A}}}\) thì \(\dfrac{1}{{{n^3}}}\) luôn nhỏ hơn \(A\))

    Mà \(\left| {{u_n} - 1} \right| < \dfrac{1}{{{n^3}}}\) nên \( \left| {{u_n} - 1} \right|\) luôn nhỏ hơn một số dương \(A\) bé tùy ý kể từ một số hạng nào đó trở đi

    (số hạng thứ \(n\) mà \(n > \sqrt[3]{{\dfrac{1}{A}}}\))

    Theo định nghĩa dãy số có giới hạn \(0\) thì \(\lim \left( {{u_n} - 1} \right) = 0\)

    \( \Rightarrow \lim {u_n} = 1\). (đpcm)

      bởi Nguyễn Xuân Ngạn 24/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON