Trên mặt phẳng tọa độ \(Oxy\) cho bốn điểm: \(A(7; -3); B(8; 4); C(1; 5); D(0;-2)\). Hãy chứng minh rằng tứ giác \(ABCD\) là hình vuông.
Trả lời (1)
-
Ta có: \(\vec{AB} = (1; 7)\); \(\vec{DC}= (1; 7)\), \(\vec{AD} = (-7; 1)\)
\(\Rightarrow \vec{AB} = \vec{DC}\)
Mà \(\overrightarrow {AB} ,\overrightarrow {AD} \) không cùng phương
\(\Rightarrow\) Tứ giác \( ABCD\) là hình bình hành (1)
Ta có :
\(\begin{array}{l}
AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {7^2}} \\
= \sqrt {50} = 5\sqrt 2 \\
AD = \left| {\overrightarrow {AD} } \right| = \sqrt {{{\left( { - 7} \right)}^2} + {1^2}} \\
= \sqrt {50} = 5\sqrt 2
\end{array}\)Suy ra \(AB = AD\), kết hợp với (1) suy ra \(ABCD\) là hình thoi (2)
Mặt khác \(\vec{AB} = (1; 7)\); \(\vec{AD} = (-7; 1)\)
\(\overrightarrow {AB} .\overrightarrow {AD} = 1.( - 7) + 7.1 = 0\)
\( \Rightarrow \vec{AB}⊥\vec{AD}\) nên \(AB\bot AD\) (3)
Kết hợp (2) và (3) suy ra \(ABCD\) là hình vuông.
bởi minh dương 05/09/2022Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời