YOMEDIA
NONE

Chứng minh a^3+b^3+c^3 > = a+b+c biết a, b, c > 0 và abc=1

Cho a,b,c > 0 ,abc = 1 . CMR a3+ b3 + c3 \geq a+ b + c

Theo dõi Vi phạm
ATNETWORK

Trả lời (2)

  •  Đặt P = 1/a³(b + c) + 1/b³(a + c) +1/c³(a + b) 

    = bc/a²(b + c) + ac/b²(a + c) + ab/c²(a + b) ------- (do abc = 1) 

    = 1 / a²[(1/c) + (1/b)] + 1 / b²[(1/c) + (1/a)] + 1 / c²[(1/b) + (1/a)] 

    = (1/a²) / [(1/c) + (1/b)] + (1/b²) / [(1/c) + (1/a)] + (1/c²) / [(1/b) + (1/a)] 

    Đặt 1/a = x, 1/b = y, 1/c = z thì xyz = 1 

    Và khi đó: 

    P = x²/(y + z) + y²/(z + x) + z²/(x + y) 

    Sử dụng BĐT Cauchy: 

    ♠ x²/(y + z) + (y + z)/4 ≥ x 

    ♠ y²/(z + x) + (z + x)/4 ≥ y 

    ♠ z²/(x + y) + (x + y)/4 ≥ z 

    Cộng vế 3 BĐT trên ta được 

    P + (x + y + z)/2 ≥ x + y + z 

    Hay: 

    P ≥ (x + y + z)/2 

    Lại theo Cauchy thì x + y + z ≥ 3.³√(xyz) = 3 

    Nên P ≥ 3/2 (và ta được đpcm)

      bởi Nguyễn Tấn Sương 19/03/2019
    Like (1) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON