Tìm GTNN của f(x)=1/(1-x)+9/(3+x)
Tìm giá trị nhỏ nhất của hàm số\(f\left(x\right)=\frac{1}{1-x}+\frac{9}{3+x}\)với (\(-3< x< 1\))
Trả lời (1)
-
Tổng mẫu =hằng số=> áp dụng BĐT đưa mẫu về hằng số
Mình trình bầy cho bạn cách khác xuất phát từ gốc của vấn đề
Tất nhiên đi từ gốc --> mệt hơn nhưng rất vững kể cả bài toán có suy biến chút ít.
\(f\left(x\right)=\frac{1}{1-x}+\frac{9}{3+x}=\frac{3+x}{\left(1-x\right)\left(3+x\right)}+\frac{9\left(1-x\right)}{\left(3+x\right)\left(1-x\right)}=\frac{12-8x}{-x^2-2x+3}\)
Với điều kiện (*) -3<x<1 => mẫu số luôn >0; tử số có thể >0 hoặc <0. =>vậy thêm vào tử một đại lượng. sao cho tử luôn không âm hoặc luôn âm.
Ta có: \(\frac{12-8x}{-x^2-2x+3}-4=\frac{12-8x-4\left(-x^2-2x+3\right)}{\left(-x^2-2x+3\right)}=\frac{12-8x+4x^2+8x-12}{\left(-x^2-2x+3\right)}=\frac{4x^2}{\left(-x^2-2x+3\right)}\)
Mẫu số >0 lý luận trước: Tử số =4x^2>=0
\(\Rightarrow\frac{4x^2}{\left(-x^2-2x+3\right)}\ge0\Rightarrow\frac{12-8x}{\left(-x^2-2x+3\right)}-4\ge0\Rightarrow\frac{12-8x}{\left(-x^2-2x+3\right)}\ge4\)GTNN=4 khi x=0 thủa mãn điều kiện (*)
bởi nguyễn thu thảo 28/09/2018Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời
-
Lập phương trình chính tắc của hypebol (H), biết (H) đi qua hai điểm M(-1 ; 0) và \(N(2;2\sqrt 3 )\)
25/11/2022 | 1 Trả lời