YOMEDIA
NONE

Thực hiện tìm giá trị lớn nhất, nhỏ nhất của hàm số sau trên tập xác định của nó \(y = \sqrt {x - 1} + \sqrt {5 - x} \)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Vế phải có nghĩa khi \(1 \le x \le 5\).

    Ta có: \({y^2} = {(\sqrt {x - 1}  + \sqrt {5 - x} )^2} = 4 + 2\sqrt {(x - 1)(5 - x)} \)

    \( \Leftrightarrow \left\{ \begin{array}{l}{y^2} \ge 4,\forall x \in {\rm{[}}1;5]\\{y^2} \le 4 + (x - 1) + (5 - x) = 8\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y \ge 2\\y \le 2\sqrt 2 \end{array} \right.\forall x \in {\rm{[}}1;5]\)

    Hơn nữa : \(y = 2\) \( \Leftrightarrow (x - 1)(5 - x) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 5\end{array} \right.\)
    \(y = 2\sqrt 2 \) \( \Leftrightarrow x - 1 = 5 - x\) \( \Leftrightarrow x = 3\)

    Vậy giá trị lớn nhất của hàm số đã cho bằng \(2\sqrt 2 \)khi \(x = 3\), giá trị nhỏ nhất của hàm số đã cho bằng 2 khi \(x = 1\) hoặc \(x = 5\).

      bởi Nguyễn Vân 26/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON