YOMEDIA
NONE

Hãy tìm giá trị của m sao cho phương trình: \({x^{4\;}} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}2m} \right){x^2}\; + {\rm{ }}{m^2}\;-{\rm{ }}1{\rm{ }} = {\rm{ }}0\) có hai nghiệm phân biệt.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Phương trình đã cho có hai nghiệm phân biệt khi và chỉ khi phương trình (1) có hai nghiệm trái dấu hoặc có một nghiệm kép dương.

    Ta xét hai trường hợp:

    + Phương trình (1) có hai nghiệm trái dấu khi và chỉ khi:

    P = m - 1 < 0 hay -1 < m < 1.

    + Phương trình (1) có nghiệm kép \(\Delta  = 0 \Leftrightarrow 5 - 4m = 0 \Leftrightarrow m = \frac{5}{4}\)

    Khi đó, với \(m = {5 \over 4}\) thì phương trình (1) là \({y^2} - \frac{3}{2}y + \frac{9}{{16}} = 0 \Leftrightarrow y = \frac{3}{4} > 0\) là nghiệm kép dương (thỏa mãn).

    Vậy phương trình (1) có hai nghiệm phân biệt khi và chỉ khi:

    \(m \in ( - 1,1) \cup {\rm{\{ }}{5 \over 4}{\rm{\} }}\)

      bởi Mai Hoa 12/09/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON