Hãy tìm giá trị của m sao cho phương trình: ({x^{4;}} + { m{ }}left( {1{ m{ }} - { m{ }}2m} ight){x^2}; + { m{ }}{m^2};-{ m{ }}1{ m{ }} = { m{ }}0) vô nghiệm
Trả lời (1)
-
Đặt y = x2 ; y ≥ 0, ta được phương trình:
y2 + (1 – 2m)y + m2 – 1 = 0 (1)
Phương trình đã cho vô nghiệm ⇔ (1) vô nghiệm hoặc (1) chỉ có nghiệm âm
Phương trình (1) vô nghiệm khi và chỉ khi:
\(\eqalign{
& \Delta = {(1 - 2m)^2} - 4({m^2} - 1) = 5 - 4m < 0 \cr
& \Rightarrow m > {5 \over 4} \cr} \)Phương trình (1) chỉ có nghiệm âm khi và chỉ khi:
\(\left\{ \matrix{
\Delta \ge 0 \hfill \cr
P > 0 \hfill \cr
S < 0 \hfill \cr} \right.\)Thay Δ = 5 – 4m, P = m2– 1 và S = 2m – 1, ta có hệ:
\(\left\{ \matrix{
5 - 4m \ge 0 \hfill \cr
{m^2} - 1 > 0 \hfill \cr
2m - 1 < 0 \hfill \cr} \right. \)\( \Leftrightarrow \left\{ \begin{array}{l}
m \le \frac{5}{4}\\
\left[ \begin{array}{l}
m > 1\\
m < - 1
\end{array} \right.\\
m < \frac{1}{2}
\end{array} \right.\)\(\Leftrightarrow m < - 1\)
Vậy phương trình đã cho vô nghiệm khi và chỉ khi
\(\left[ \matrix{
m < - 1 \hfill \cr
m > {5 \over 4} \hfill \cr} \right.\)bởi Tuyet Anh 12/09/2022Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời