YOMEDIA
NONE

Giải phương trình: \(\dfrac{{4x}}{{{x^2} + x + 3}} + \dfrac{{5x}}{{{x^2} - 5x + 3}} = - \dfrac{3}{2}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Nhận thấy x = 0 không phải là nghiệm, nên phương trình đã cho tương đương với phương trình :

    \(\dfrac{4}{{x + \dfrac{3}{x} + 1}} + \dfrac{5}{{x + \dfrac{3}{x} - 5}} =  - \dfrac{3}{2}\)

    Đặt \(y = x + \dfrac{3}{x}\) ta nhận được phương trình

    \(\dfrac{4}{{y + 1}} + \dfrac{5}{{y - 5}} =  - \dfrac{3}{2}\) (*)

    Biến đổi phương trình (*) thành \(\dfrac{{{y^2} + 2y - 15}}{{\left( {y + 1} \right)\left( {y - 5} \right)}} = 0.\) Phương trình này có hai nghiệm \({y_1} =  - 5,{y_2} = 3.\) Từ đó dẫn đến hai trường hợp sau : 

    \( \bullet x + {3 \over x} = - 5 \Leftrightarrow \left\{ {\matrix{{{x^2} + 5x + 3 = 0} \cr {x \ne 0} \cr} } \right. \)

    \(\Leftrightarrow x = {{ - 5 \pm \sqrt {13} } \over 2}\)

    \(\bullet x + {3 \over x} = 3 \Leftrightarrow \left\{ {\matrix{{{x^2} - 3x + 3 = 0} \cr {x \ne 0} \cr} } \right.\)

    Kết luận. Phương trình có nghiệm \(x = \dfrac{{ - 5 \pm \sqrt {13} }}{2}\)

      bởi Dang Thi 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON