Giải hệ pt 1+x^3y^3=19x^3 và y+xy=-6x^2
\(\begin{cases} 1+x^3y^3=19x^3\\y+xy^2=-6x^2\end{cases}\)
Trả lời (1)
-
do \(x=0\) và \(y=0\) không phải là một nghiệm của hệ nên
HPT\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1+x^3y^3}{x^3}=\dfrac{19x^3}{x^3}\\\dfrac{y+xy^2}{x^2}=-\dfrac{6x^2}{x^2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x^3}+y^3=19\\\dfrac{y}{x^2}+\dfrac{y^2}{x}=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(\dfrac{1}{x}+y\right)^3-\dfrac{3y}{x}\left(\dfrac{1}{x}+y\right)=19\\\dfrac{y}{x}\left(\dfrac{1}{x}+y\right)=-6\end{matrix}\right.\)
Đặt \(\dfrac{1}{x}+y=u\) ; \(\dfrac{y}{x}=v\)
HPT\(\Leftrightarrow\left\{{}\begin{matrix}u^3-3uv=19\\uv=-6\end{matrix}\right.\)
\(\Rightarrow u^3+18=19\Rightarrow u^3=1\)\(\Rightarrow u=1\)
\(\Rightarrow v=-6\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+y=1\\\dfrac{y}{x}=-6\end{matrix}\right.\)
\(\Rightarrow6x^2+x-1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
đến đây thì ez rồi
bởi Trần Phương Anh
06/11/2018
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



