Giải bất phương trình sau: \(|x + 2| + \left| { - 2x + 1} \right| \le x + 1\).
Trả lời (1)
-
Bỏ dấu giá trị tuyệt đối ở vế trái của bất phương trình ta có:
.png)
Bất phương trình đã cho tương đương với
\(\left[ \begin{array}{l}\left\{ \begin{array}{l}x \le - 2\\ - (x + 2) + ( - 2x + 1) \le x + 1\end{array} \right.\\\left\{ \begin{array}{l} - 2 < x \le \dfrac{1}{2}\\(x + 2) + ( - 2x + 1) \le x + 1\end{array} \right.\\\left\{ \begin{array}{l}x > \dfrac{1}{2}\\(x + 2) - ( - 2x + 1) \le x + 1\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \le - 2\\4x \ge - 2\end{array} \right.\\\left\{ \begin{array}{l} - 2 < x \le \dfrac{1}{2}\\2x \ge 2\end{array} \right.\\\left\{ \begin{array}{l}x > \dfrac{1}{2}\\2x \le 0\end{array} \right.\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \le - 2\\x \ge - \dfrac{1}{2}\end{array} \right.\\\left\{ \begin{array}{l} - 2 < x \le \dfrac{1}{2}\\x \ge 1\end{array} \right.\\\left\{ \begin{array}{l}x > \dfrac{1}{2}\\x \le 0\end{array} \right.\end{array} \right.\)(Vô nghiệm)
Vậy bất phương trình đã cho vô nghiệm.
bởi Nguyễn Anh Hưng
20/02/2021
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



