Em hãy xác định \(a, b, c\), biết parabol \(y = ax^2+ bx + c\) đi qua điểm \(A(8; 0)\) và có đỉnh \(I(6; - 12)\).
Trả lời (1)
-
Parabol đi qua điểm \(A(8; 0)\) nên ta có:
\(a.8^2+b.8+c=0\) \( \Leftrightarrow 64a + 8b + c = 0\) (1)
Parabol có đỉnh \(I(6; - 12)\) nên ta có:
\( - \frac{b}{{2a}} = 6 \) (2) và \( - \frac{\Delta }{{4a}} = - 12 \) (3)
Mà: \((2) \Leftrightarrow - b = 6.2a \Leftrightarrow - b = 12a \Leftrightarrow 12a + b = 0 \Rightarrow b = - 12a \) (2*)
và \((3) \Leftrightarrow\ \Delta = 12.4a \Leftrightarrow {b^2} - 4ac = 48a \) (3*)
Thay (2*) vào (3*) \( 144{a^2} -4ac = 48a \Leftrightarrow 144{a^2} - 48a = 4ac \Leftrightarrow c = \dfrac{{144{a^2} - 48a}}{{4a}} = 36a - 12\,\,\left( 4 \right)\)
Thay (2*) và (4) vào (1) ta được:
\(\begin{array}{l}
64a + 8.\left( { - 12a} \right) + 36a - 12 = 0\\
\Leftrightarrow 64a - 96a + 36a - 12 = 0\\ \Leftrightarrow 4a - 12 = 0
\Leftrightarrow a = 3
\end{array}\)Dễ dàng suy ra \(b = -36\) ; \(c= 96\)
Phương trình parabol cần tìm là: \(y = 3x^2- 36x + 96\).
bởi Mai Thuy 29/08/2022Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời