Đường tròn (T) ngoại tiếp tam giác ABF có phương trình \((x-\frac{9}{4})^2+(y-\frac{1}{4})^2=\frac{225}{8}\)
Em sẽ rất biết ơn ai giải giúp em bài này!
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD biết AB= \(\frac{3}{2}\) AD . Gọi F là điểm thuộc đoạn thẳng BC sao cho BF= \(\frac{3}{4}\)BC. Đường tròn (T) ngoại tiếp tam giác ABF có phương trình \((x-\frac{9}{4})^2+(y-\frac{1}{4})^2=\frac{225}{8}\). Đường thẳng d đi qua hai điểm A, C có phương trình \(3x+11y-2=0\). Tìm tọa độ đỉnh C biết điểm A có hoành độ âm.
Trả lời (1)
-
Ta có \(\left\{\begin{matrix} A\in d\\ A\in (T) \end{matrix}\right.\Rightarrow\) tọa độ của điểm A là nghiệm của hệ pt \(\left\{\begin{matrix} \left ( x-\frac{9}{4} \right )^2+\left ( y-\frac{1}{4} \right )^2=\frac{225}{8}\\ 3x+11y-2=0 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=\frac{2-11y}{3} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \\ \left ( \frac{2-11y}{3}-\frac{9}{4} \right )^2+\left ( y-\frac{1}{4} \right )^2=\frac{225}{8} \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x=\frac{2-11y}{3}\\ \\ \left ( -\frac{11y}{3}-\frac{19}{12} \right )^2+\left ( y-\frac{1}{4} \right )^2=\frac{225}{8} \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=\frac{2-11y}{3}\\ \\ 13y^2+10y-23=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{2-11y}{3}\\ \\ \bigg \lbrack\begin{matrix} y=1\\ y=-\frac{23}{13} \end{matrix} \end{matrix}\right.\Leftrightarrow \Bigg \lbrack\begin{matrix} \left\{\begin{matrix} x=-3\\ y=1 \end{matrix}\right.\\ \left\{\begin{matrix} x=\frac{93}{13}\\ y=-\frac{23}{13} \end{matrix}\right. \end{matrix}\Rightarrow\) A(-3;1) (Vì xA < 0)
Gọi điểm E thuộc tia đối của tia BA sao cho \(AF\perp CE\)
Đặt \(BE=xAB\Rightarrow \overline{BE}=x\overline{AB}\), ta có
\(\overline{CE}=\overline{BE}-\overline{BC}=x\overline{AB}-\overline{AD}\) và \(\overline{AF}=\overline{AB}-\overline{BF}=\overline{AB}+\frac{3}{4}\overline{AD}\)
Vì AF \(\perp\) CE do đó \(\overline{CE}\perp \overline{AF}=0\Leftrightarrow (x\overline{AB}-\overline{AD})(\overline{AB}+\frac{3}{4}\overline{AD})=0\)
\(\Leftrightarrow xAB^2-\frac{3}{4}AD^2=0\Leftrightarrow x=\frac{1}{3}\)
Vậy E thuộc tia đối của tia BA thỏa mãn \(BE=\frac{1}{3}AB\) khi đó AF \(\perp\) CE
Xét tam giác ACE có \(\left\{\begin{matrix} AF\perp CE\\ CB\perp AE \end{matrix}\right.\Rightarrow\) F là trực tâm tam giác ACE hay EF \(\perp\) AC
Gọi \(H=EF\cap AC\Rightarrow\) tứ giác ABFH nội tiếp hay \(H\in (T):\left ( x-\frac{9}{4} \right )^2+\left ( y-\frac{1}{4} \right )^2=\frac{225}{8}\) do đó H là giao điểm (khác A) của đường thẳng d và đường tròn (T) \(\Rightarrow H\left ( \frac{93}{13};-\frac{23}{13} \right )\)
Qua B kẻ đường thẳng song song với EF cắt AC tại K \(\Rightarrow BK//HE\), khi đó ta có
\(\left\{\begin{matrix} \frac{AK}{KH}=\frac{AB}{BE}=3\\ \\ \frac{KH}{HC}=\frac{BF}{FC}=3 \end{matrix}\right.\Rightarrow AH=12HC\Rightarrow \overline{AH}=12\overline{HC}\)
Gọi C(a;b) \(\Rightarrow \overline{HC}\left ( a-\frac{93}{13} ;b+\frac{23}{13}\right );\overline{AH}\left ( \frac{132}{13};-\frac{36}{13} \right )\)
Do đó \(\overline{AH}=12\overline{HC}\Leftrightarrow \left\{\begin{matrix} \frac{132}{13}=12(a-\frac{93}{13})\\ \\ -\frac{36}{13}=12(b+\frac{23}{13}) \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=8\\ b=-2 \end{matrix}\right.\Rightarrow C(8;-2)\)
Vậy C(8;-2)bởi thu trang 09/02/2017Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời