Có hai rổ quýt chứa số quýt bằng nhau. Nếu lấy \(30\) quả ở rổ thứ nhất đưa sang rổ thứ hai thì số quả ở rổ thứ hai bằng \(\dfrac{1}{3}\) của bình phương số quả còn lại ở rổ thứ nhất. Hỏi số quả quýt ở mỗi rổ lúc ban đầu là bao nhiêu?
Trả lời (1)
-
Gọi \(x\) là số quýt chứa trong một rổ lúc đầu. Điều kiện \(x\in Z\), \(x > 30\).
Lấy \(30\) quả ở rổ thứ nhất đưa sang rổ thứ hai nên số quýt trong rổ thứ nhất còn \(x-30\), số quýt trong rổ thứ hai là: \(x+30\)
Vì số quả ở rổ thứ hai bằng \(\dfrac{1}{3}\) của bình phương số quả còn lại ở rổ thứ nhất nên ta có phương trình:
\(\begin{array}{l}
x + 30 = \frac{1}{3}{\left( {x - 30} \right)^2}\\
\Leftrightarrow 3\left( {x + 30} \right) = {\left( {x - 30} \right)^2}\\
\Leftrightarrow 3x + 90 = {x^2} - 60x + 900\\
\Leftrightarrow {x^2} - 60x + 900 - 3x - 90 = 0\\
\Leftrightarrow {x^2} - 63x + 810 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 45\left( {TM} \right)\\
x = 18\left( {loai} \right)
\end{array} \right.
\end{array}\)Vậy số quýt ở mỗi rổ lúc đầu là \(45\) quả.
bởi Mai Anh 19/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời