YOMEDIA
NONE

Chứng minh rằng nếu sđ \(\left( {Ou,Ov} \right) = \alpha \), sđ \(\left( {Ou',Ov'} \right) = \beta \) thì các góc hình học \(uOv,u'Ov'\) bằng nhau khi và chỉ khi \(\beta - \alpha = k2\pi \) hoặc \(\beta + \alpha = k2\pi \left( {k \in Z} \right)\).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Viết \(\alpha  = {\alpha _0} + {k_0}2\pi , - \pi  < {\alpha _0} \le \pi ,\left( {{k_0} \in Z} \right)\) và

    \(\beta  = {\beta _0} + {l_0}2\pi , - \pi  < {\beta _0} \le \pi ,\left( {{l_0} \in Z} \right)\), ta có \(\left| {{\alpha _0}} \right|\) là số đo của \(\widehat {uOv},\left| {{\beta _0}} \right|\) là số đo của \(\widehat {u'Ov'}\). Hai góc hình học bằng nhau khi và chỉ khi

    \(\left| {{\alpha _0}} \right| = \left| {{\beta _0}} \right| \Leftrightarrow {\beta _0} = {\alpha _0}\) hoặc \({\alpha _0} =  - {\beta _0}\)

    \( \Leftrightarrow \beta  - \alpha  = k2\pi \) hoặc \(\beta  + \alpha  = k2\pi ,\left( {k \in Z} \right)\)

      bởi Trịnh Lan Trinh 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON