YOMEDIA
NONE

Chứng minh a^2+b^2+1>=ab+a+b

CMR : a+ b2 + 1 > ab + a + b 

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Vì \(a^2\)\(\ge\)0; \(b^2\)\(\ge\)0; 1>0 nên ta áp dụng bất đẳng thức Cosi cho từng cặp ta có:

    \(a^2\)+\(b^2\)\(\ge\)2\(\sqrt{a^2b^2}\)=2ab    (1)

    \(a^2\)+1\(\ge\)2\(\sqrt{a^21}\)=2a          (2)

    \(b^2\)+1\(\ge\)2\(\sqrt{b^2.1}\)=2b         (3)

    Cộng vế với vế của (1); (2) và (3) ta có:

    2\(a^2\)+2\(b^2\)+2\(\ge\)2ab+2a+2b

    \(a^2\)+\(b^2\)+1\(\ge\)ab+a+b( chia cả 2 vế của Bất phương trình cho 2)

    Dấu = xảy ra khi a=b=1

      bởi Quách Thị Hoàng Nhân 28/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON