Chứng minh 52/27 < =a^2+b^2+c^2+2abc < 2
Tam giác ABC có các cạnh là a, b, c và có chu vi bằng 2. Chứng minh rằng :
\(\dfrac{52}{27}\le a^2+b^2+c^2+2abc< 2\)
Trả lời (1)
-
Theo BĐT tam giác ta có:
\(b+c>a\Rightarrow a+b+c>2a\Rightarrow2>2a\Rightarrow a< 1\)
Tương tự cũng có: \(b<1;c<1\)
Áp dụng BĐT AM-GM ta có:
\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(\dfrac{1-a+1-b+1-c}{3}\right)^3=\left(\dfrac{3-\left(a+b+c\right)}{3}\right)^3=\dfrac{1}{27}\)
\(\Rightarrow0< \left(1-a\right)\left(1-b\right)\left(1-c\right)\le\dfrac{1}{27}\)
\(\Rightarrow0< ab+bc+ca-abc-\left(a+b+c\right)+1\le\dfrac{1}{27}\)
\(\Rightarrow0< ab+bc+ca-abc-1\le\dfrac{1}{27}\)
\(\Rightarrow1< ab+bc+ca-abc\le\dfrac{28}{27}\)
\(\Rightarrow2< 2ab+2bc+2ca+a^2+b^2+c^2-\left(a^2+b^2+c^2+2abc\right)\le\dfrac{56}{27}\)
\(\Rightarrow2< \left(a+b+c\right)^2-\left(a^2+b^2+c^2+2abc\right)\le\dfrac{56}{27}\)
\(\Rightarrow2< 4-\left(a^2+b^2+c^2+2abc\right)\le\dfrac{56}{27}\)
\(\Rightarrow\dfrac{52}{27}\le a^2+b^2+c^2+2abc< 2\) *Đúng*
bởi Nguyễn Thị Ánh Nguyệt
22/10/2018
Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
28/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời
-
27/11/2022 | 1 Trả lời



