YOMEDIA
NONE

Chứng minh 1/(2x+y+z)^2+1/(2x+y+z)^2+1/(2x+y+z)^2 < =3/16

1. Cho \(x,y,z\) là 3 số thực dương thõa mản xyz = 1. C/m BĐT

\(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2x+y+z\right)^2}\le\dfrac{3}{16}\)

2. Cho x,y,z không âm và thõa mản \(x^2+y^2+z^2=1\). C/m BĐT

\(\left(x^2y+y^2z+z^2x\right)\left(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{y^2+1}}+\dfrac{1}{\sqrt{z^2+1}}\right)\le\dfrac{3}{2}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • 1. Theo BĐT AM - GM, ta có:

    \(\Sigma\dfrac{1}{\left(2x+y+z\right)^2}=\Sigma\dfrac{1}{\left\{\left(x+y\right)+\left(x+z\right)\right\}^2}\le\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\)

    Do đó BĐT ban đầu sẽ đúng nếu ta C/m được

    \(\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\le\dfrac{3}{16}\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

    \(\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(xy+yz+zx\right)\)

    Nhưng điều này đúng vì \(xy+yz+zx\ge\sqrt[3]{x^2y^2z^2}=3\) và theo bổ đề bên trên. Từ đó ta có điều phải chứng minh. Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\)

    ( Còn bài 2 để suy nghĩ rồi tối đăng cho nha )

      bởi Hương Vân 13/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON