YOMEDIA
NONE

Chứng minh 1/15+1/16+1/17+...+1/43+1/44 > 5/6

Chứng tỏ:\(\dfrac{1}{15}\) +\(\dfrac{1}{16}\) +\(\dfrac{1}{17}\) + ... +\(\dfrac{1}{43}\) +\(\dfrac{1}{44}\) > \(\dfrac{5}{6}\)

=> Đây là bài nâng cao có trong bài học kỳ II của mk. Nhưng mk ko được chữa nên bạn nào làm được giảng giùm mk!!!!!!!!

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{44}=\left(\dfrac{1}{15}+\dfrac{1}{16}+...+\dfrac{1}{29}\right)+\left(\dfrac{1}{30}+\dfrac{1}{31}+...+\dfrac{1}{44}\right)\)

    \(>\left(\dfrac{1}{29}+\dfrac{1}{29}+...+\dfrac{1}{29}\right)+\left(\dfrac{1}{44}+\dfrac{1}{44}+...+\dfrac{1}{44}\right)\)

    \(=\dfrac{15}{29}+\dfrac{15}{44}>\dfrac{15}{30}+\dfrac{15}{45}=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

      bởi Nguyen Ngoc Anh 28/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON