YOMEDIA
NONE

Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại M. Gọi P là trung điểm của cạnh AD. Chứng minh rằng MP vuông góc với BC khi và chỉ khi \(\overrightarrow {MA} .\overrightarrow {MC} = \overrightarrow {MB} .\overrightarrow {MD} \).

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có:

    \(2\overrightarrow {MP} .\overrightarrow {BC}  = (\overrightarrow {MA}  + \overrightarrow {MD} )(\overrightarrow {MC}  - \overrightarrow {MB} )\)

    =\(\overrightarrow {MA} .\overrightarrow {MC}  - \underbrace {\overrightarrow {MA} .\overrightarrow {MB} }_0 + \underbrace {\overrightarrow {MD} .\overrightarrow {MC} }_0 - \overrightarrow {MD} .\overrightarrow {MB} \)

    =\(\overrightarrow {MA} .\overrightarrow {MC}  - \overrightarrow {MD} .\overrightarrow {MB} \).

    Do đó \(\overrightarrow {MP}  \bot \overrightarrow {BC}  \Leftrightarrow \overrightarrow {MP} .\overrightarrow {BC}  = \overrightarrow 0 \)\( \Leftrightarrow \overrightarrow {MA} .\overrightarrow {MC}  = \overrightarrow {MD} .\overrightarrow {MB} \)

      bởi thi trang 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON