Cho tam giác \(ABC\) nội tiếp trong đường tròn \((O)\) và một điểm \(M\) sao cho các góc \(AMB, BMC, CMA\) đều bằng \(120^0\). Các đường thẳng \(AM, BM, CM\) cắt đường tròn \((O)\) lần lượt tại \(A’, B’, C’\). Chứng minh rằng: \(MA+MB+MC\)\(=MA’+MB’+MC’.\)
Trả lời (1)
-
Lấy các điểm \(A_1, B_1, C_1\) sao cho \(\overrightarrow {M{A_1}} = \dfrac{{\overrightarrow {MA} }}{{MA}};\) \( \overrightarrow {M{B_1}} = \dfrac{{\overrightarrow {MB} }}{{MB}};\) \(\overrightarrow {M{C_1}} = \dfrac{{\overrightarrow {MC} }}{{MC}} \), khi đó cả ba vec tơ trên đều có độ dài bằng 1, mà góc giữa hai vectơ bất kì trong chúng đều bằng \(120^0\) nên \(M\) là tâm của tam giác đều \(A_1 B_1 C_1\).
Theo bài 24, ta có
\(2\overrightarrow {MA} .\overrightarrow {MO}\)
\( = MA(MA - MA')\), suy ra \(2\dfrac{{\overrightarrow {MA} }}{{MA}}.\overrightarrow {MO} \)
\(= MA - MA'\),
hay \(2\overrightarrow {M{A_1}} .\overrightarrow {MO} = MA - MA'\).
Tương tự
\(2\overrightarrow {M{B_1}} .\overrightarrow {MO} = MB - MB',\) \( 2\overrightarrow {M{C_1}} .\overrightarrow {MO} = MC - MC'.\)
Từ đó ta có
\(MA + MB + MC\)\( - MA' - MB' - MC' \)
\(= 2(\overrightarrow {M{A_1}} + \overrightarrow {M{B_1}} + \overrightarrow {M{C_1}} ).\overrightarrow {MO} = 0\)
Hay
\(MA + MB + MC\)\( = MA' + MB' + MC'\)
bởi Phạm Hoàng Thị Trà Giang 23/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời