Cho hai phương trình \({x^2} - 5x + k = 0\,\left( 1 \right)\) và \({x^2} - 7x + 2k = 0\,\left( 2 \right)\). Với giá trị nào của k thì phương trình (1) có hai nghiệm và nghiệm này gấp đôi nghiệm kia?
Trả lời (1)
-
Điều kiện để phương trình (1) có nghiệm là \({\Delta _1} = 25 - 4k \ge 0.\) Với điều kiện đó, gọi hai nghiệm của (1) là \(x_1\) và \(x_2\). Theo điều kiện của đề bài, ta có :
\(\left\{ \matrix{{x_1} + {x_2} = 5 \hfill \cr {x_1}{x_2} = k \hfill \cr {x_2} = 2x_1 \hfill \cr} \right.\)
Từ đó suy ra \(k = \dfrac{{50}}{9}.\) Khi đó, (1) có hai nghiệm là \({x_1} = \dfrac{5}{3}\) và \({x_2} = \dfrac{{10}}{3}\)
Chú ý. Trong mỗi lời giải trên, ta nên lựa chọn cách đánh số các nghiệm sao cho “nghiệm này gấp đôi nghiệm kia” được thể hiện bởi hệ thức \(x_2 = 2x\). Nếu không lựa chọn cách đánh số các nghiệm như vậy thì điều kiện “nghiệm này gấp đôi nghiệm kia” được diễn tả bởi hệ thức \(\left( x_1 - 2x_2 \right)\left( x_2 - 2 x_1 \right) = 0.\)
bởi An Vũ 22/02/2021Like (0) Báo cáo sai phạm
Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!
Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản
Các câu hỏi mới
-
hàm số y=-3x² x-2 nghịch biến trên khoảng nào sau đây? A. (1/6; ∞) B. (-∞;1/6) C. (-1/6; ∞) D. ( ∞;1/6)
23/11/2022 | 0 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
Viết phương trình đường tròn (C) trong trường hợp sau: (C) có tâm I(3 ; – 7) và đi qua điểm A(4 ; 1)
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
25/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
24/11/2022 | 1 Trả lời
-
Cho elip (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\). Tìm điểm P thuộc (E) thoả mãn OP = 2,5.
24/11/2022 | 1 Trả lời