YOMEDIA
NONE

Cho elip (E): \(9{x^2} + 25{y^2} = 225\). Tìm điểm \(M \in (E)\) sao cho \(M \) nhìn \({F_1}{F_2}\) dưới một góc vuông.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(M(x;y)\) là điểm cần tìm, ta có :

    \(\left\{ \begin{array}{l}M \in (E)\\\widehat {{F_1}M{F_2}} = {90^0}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}M \in (E)\\O{M^2} = {c^2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}9{x^2} + 25{y^2} = 225\\{x^2} + {y^2} = 16\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x^2} = \dfrac{{175}}{{16}}\\{y^2} = \dfrac{{81}}{{16}}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}x =  \pm \dfrac{{5\sqrt 7 }}{4}\\y =  \pm \dfrac{9}{4}\end{array} \right.\)

    Vậy có bốn điểm \(M \) thỏa mãn điều kiện của đề bài là :

    \(\left( {\dfrac{{5\sqrt 7 }}{4};\dfrac{9}{4}} \right)\), \(\left( {\dfrac{{5\sqrt 7 }}{4}; - \dfrac{9}{4}} \right)\), \(\left( { - \dfrac{{5\sqrt 7 }}{4};\dfrac{9}{4}} \right)\), \(\left( { - \dfrac{{5\sqrt 7 }}{4}; - \dfrac{9}{4}} \right)\).

      bởi Goc pho 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON