YOMEDIA
NONE

Cho điểm \(O\) cố định và đường thẳng \(d\) đi qua hai điểm \(A, B\) cố định. Chứng minh rằng điểm M thuộc đường thẳng \(d\) khi và chỉ khi có số \(\alpha \) sao cho \(\overrightarrow {OM} = \alpha \overrightarrow {OA} + (1 - \alpha )\overrightarrow {OB} \). Với điều kiện nào của \(\alpha \) thì \(M\) thuộc đoạn thẳng \(AB\)?

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có

    \(\eqalign{
    & \overrightarrow {OM} = \alpha \overrightarrow {OA} + (1 - \alpha )\overrightarrow {OB} \,\, \cr 
    & \Leftrightarrow \,\,\,\overrightarrow {OM} = \alpha (\overrightarrow {OA} - \overrightarrow {OB} ) + \overrightarrow {OB} \cr 
    & \Leftrightarrow \overrightarrow {OM} - \overrightarrow {OB} = \alpha (\overrightarrow {OA} - \overrightarrow {OB} )\,\,\, \cr 
    & \Leftrightarrow \overrightarrow {BM} = \alpha \overrightarrow {BA} \,\, \Leftrightarrow M \in d. \cr} \)

    Vì \(\overrightarrow {BM}  = \alpha \overrightarrow {BA} \) nên \(M\) thuộc đoạn thẳng AB khi và chỉ khi \(0 \le \alpha  \le 1\).

      bởi Ho Ngoc Ha 22/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON