YOMEDIA
NONE

Bài 10 trang 157 SGK Đại số 10

Bài 10 (GSK trang 157)

Cho \(\cos a=-\dfrac{\sqrt{5}}{3}\) với \(\pi< a< \dfrac{3\pi}{2}\)

Tính giá trị \(\tan\alpha\) ?

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ​ta có \(sin^2a+cos^2a=1\Rightarrow sina=\pm\sqrt{1-cos^2a}=\pm\sqrt{1-\left(\dfrac{-\sqrt{5}}{3}\right)^2}=\pm\dfrac{2}{3}\)

    ​vì \(\Pi< a< \dfrac{3\Pi}{2}\Rightarrow sina< 0\) \(\Rightarrow sina=\dfrac{-2}{3}\)

    lại có \(tana=\dfrac{sina}{cosa}=\dfrac{\dfrac{-2}{3}}{\dfrac{-\sqrt{5}}{3}}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

      bởi Muội Muội 06/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON