Từ công thức tính tần số góc của con lắc đơn dao động điều hòa, học sinh có thể biết thêm công thức tìm chu kì và tần số. Nắm được mối quan hệ, sự phụ thuộc của chu kì, tần số với các đại lượng khác. Ngoài ra, giáo viên còn hướng dẫn các em một số mẹo nhớ nhanh công thức, nắm được phương pháp biến đổi, kĩ thuật biến đổi chu kì và tần số. Qua bài học này, các em thể vận dụng lý thuyết đã học để áp dụng giải các bài tập về biến đổi chu kì, tần số con lắc đơn dao động điều hòa và có phương pháp giải nhanh các dạng bài tập đó.
-
Video liên quan
-
Nội dung
-
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài 1: Tìm khoảng đơn điệu của hàm số
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm khoảng đơn điệu của hàm số như: Định nghĩa Điều kiện đủ để hàm số đơn điệu Các bước tìm khoảng đơn điệu của hàm số00:55:29 5168 TS. Phạm Sỹ Nam
-
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài 2: Tìm tham số để hàm số đơn điệu trên một miền
Bài giảng sẽ giúp các em nắm được kiến thức cơ bản về cách tìm tham số để hàm số đơn điệu trên một miền như: Công thức tính. Điều kiện đủ để hàm số đơn điệu trên một miền.00:28:42 1080 TS. Phạm Sỹ Nam
-
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài 3: Ứng dụng tính đơn điệu giải phương trình
Bài giảng sẽ giúp các em nắm kỹ hơn về lý thuyết và một số ví dụ cụ thể về ứng dụng tính đơn điệu giải phương trình.00:32:49 1080 TS. Phạm Sỹ Nam
-
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài 4: Ứng dụng tính đơn điệu giải bất phương trình
Bài giảng Ứng dụng tính đơn điệu giải bất phương trình sẽ giúp các em nắm được lý thuyết và bài tập để các em củng cố kiến thức.00:32:29 870 TS. Phạm Sỹ Nam
-
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài 5: Ứng dụng tính đơn điệu giải hệ phương trình
Bài giảng Ứng dụng tính đơn điệu giải hệ phương trình sẽ giúp các em nắm kỹ hơn cách giải hệ phương trình, cách tìm tính nghịch biến, đồng biến về tính đơn điệu của hệ phương trình.00:29:14 946 TS. Phạm Sỹ Nam
-
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài 6: Ứng dụng tính đơn điệu chứng minh bất đẳng thức
Bài giảng ứng dụng tính đơn điệu chứng minh bất đẳng thức gồm có 2 phần nội dung chính: Lý thuyết Các ví dụ cụ thể nhằm giúp các em chứng minh được đồng biến và nghịch biến.00:43:58 1076 TS. Phạm Sỹ Nam
Hôm nay chúng ta học dạng 1 của bài con lắc đơn, dạng số 1 có tên Biến đổi chu kỳ tần số của con lắc đơn dao động điều hòa. Về lý thuyết của con lắc đơn, con lắc đơn có 2 dạng: dao động điều hòa và dao động tuần hoàn, hai dao động này đều bỏ qua lực cản (lực ma sát). Nhưng dao động điều hòa khi đó biên độ góc của con lắc đơn phải bé hơn hoặc bằng 100 → trường hợp này gọi là dao động bé con lắc đơn. Ở phần dao động bé con lắc đơn có công thức tính chu kỳ và tần số của dao động con lắc đơn trong trường hợp này chính là dao động điều hòa
* Tần số góc:
\(\omega = \sqrt{\frac{g}{\ell}}\) (g: m/s2; ℓ: m)
Chu kỳ: \(T = \frac{2 \pi}{\omega } = 2 \pi \sqrt{\frac{\ell}{g}}\)
Tần số: \(f = \frac{1}{T} = \frac{1}{2 \pi}\sqrt{\frac{g}{\ell}}\)
• Từ \(T = 2 \pi \sqrt{\frac{\ell}{g}} \Rightarrow T^2 = (2 \pi)^2. \frac{\ell}{g}\)
\(\Rightarrow \left\{\begin{matrix} \ell = \frac{gT^2}{(2 \pi)^2} \Rightarrow \ell \sim T^2\\ g = \frac{(2 \pi)^2. \ell}{T^2} \Rightarrow g \sim \frac{1}{T^2} \end{matrix}\right.\)
\(\cdot \ f = \frac{1}{2\pi}\sqrt{\frac{g}{\ell}} \Rightarrow f^2 = \frac{1}{(2 \pi)^2} .\frac{g}{\ell}\)
\(\Rightarrow \left\{\begin{matrix} \ell = \frac{g}{(2 \pi)^2.f^2} \Rightarrow \ell \sim \frac{1}{f^2} \ \ \ \ \\ g = \ell.(2 \pi)^2.f^2 \Rightarrow g \sim f^2 \end{matrix}\right.\)
Nhận xét: Đối với con lắc đơn dao động điều hòa
(1) \(T, f \in g, \ell \Rightarrow T, f \in\) Vị trí địa lý và nhiệt độ
\(T, f \notin m, A\)
(2) \(T \sim \sqrt{\ell}\) và \(\frac{1}{\sqrt{g}} \Rightarrow T^2 \sim \ell\) và \(\frac{1}{g}\)
(3) \(T \sim \frac{1}{\sqrt{\ell}}\) và \(\sqrt{g} \Rightarrow f^2 \sim \frac{1}{f}\) và g
VD1: Tại cùng một nơi trên mặt đất, hai con lắc đơn có chiều dài ℓ1, ℓ2 dao động với tần số f1, f2 tương ứng. Tìm tần số của con lắc đơn có chiều dài ℓ tại đó với:
a/ \(\ell = \ell _1 + \ell _2\)
b/ \(2\ell = 3\ell _1 - \ell _2\)
c/ \(\frac{2}{\ell }= \frac{4}{\ell } + \frac{5}{\ell _2}\)
Giải:
Ta có \(f = \frac{1}{2 \pi}\sqrt{\frac{g}{\ell}} \Rightarrow f^2 = \frac{1}{(2 \pi)^2}.\frac{g}{\ell}\)
\(\Rightarrow \ell = \frac{g}{(2 \pi)^2 . f^2}\)
a/ \(\ell = \ell _1 + \ell _2 \Rightarrow \frac{g}{(2 \pi)^2.f^2} = \frac{g}{(2\pi)^2.f_{1}^2} + \frac{g}{(2\pi)^2.f_{2}^2}\)
\(\Rightarrow \frac{1}{f^2} = \frac{1}{f_{1}^{2}} + \frac{1}{f_{2}^{2}} = \Rightarrow f = \frac{f_1.f_2}{\sqrt{f_{1}^{2}+f_{2}^{2}}}\)
b/ \(2\ell = 3\ell _1 - \ell _2 \Rightarrow \frac{2}{f^2} = \frac{3}{f_{1}^{2}} - \frac{1}{f_{2}^{2}} \Rightarrow f = \ ?\)
c/ \(\frac{2}{\ell }= \frac{4}{\ell } + \frac{5}{\ell _2} \Rightarrow 2f^2 = 4f_{1}^{2} + 5f_{2}^{2} \Rightarrow f = \ ?\)
Tổng quát:
\(x.\ell = y.\ell _1 \pm z.\ell _2\)
\(\Rightarrow \left\{\begin{matrix} x.T^2 = y.T_{1}^{2} \pm z.T_{2}^{2}\\ \frac{x}{f^2} = \frac{y}{f_{1}^{2}} \pm \frac{z}{f_{2}^{2}} \hspace{1,3cm} \end{matrix}\right.\)
VD2: Tại cùng một nơi trên mặt đất, hai con lắc đơn có chiều dài ℓ1, ℓ2 dao động với tần số T1, T2. Trong cùng một khoảng thời gian con lắc thứ nhất thực hiện 18 dao động; con lắc thứ hai thực hiên được 24 dao động. Tìm ℓ1, ℓ2 biết tổng của chúng bằng 2m?
Giải:
\(T_1 = 2 \pi \sqrt{\frac{\ell_1}{g}}; T_2 = 2 \pi \sqrt{\frac{\ell_2}{g}}\)
Ta có:
\(\cdot \ \ell _1 + \ell _2 = 2m = 200 \ (cm) \ (1)\)
\(\left.\begin{matrix} \cdot \ T_1 = \frac{\Delta t}{n_1}\\ \cdot \ T_2 = \frac{\Delta t}{n_2} \end{matrix}\right\} \Delta t = n_1.T_1 = n_2.T_2\)\(\Rightarrow \frac{T_1}{T_2} = \frac{n_2}{n_1} \Rightarrow \sqrt{\frac{\ell _1}{\ell_2}} = \frac{n_2}{n_1}\)
\(\Rightarrow \frac{\ell _1}{\ell_2} = \left ( \frac{24}{18} \right )^2=\frac{16}{9}\ (2)\)
Từ (1), (2) \(\Rightarrow \left\{\begin{matrix} \ell _1 = 128 \ (cm)\\ \ell _2 = 72\ (cm) \end{matrix}\right.\)
VD3: Nếu tăng chiều dài của một con lắc đơn thêm 44 cm thì chu kỳ của nó tăng 20%. Tìm chiều dài ban đầu của con lắc này?
Giải:
\(T = 2 \pi \sqrt{\frac{\ell}{g}} \ (1)\)
\(T' = 2 \pi \sqrt{\frac{\ell '}{g}} \Rightarrow T + 0,2T = 2 \pi \sqrt{\frac{\ell '}{g}}\)
\(\Rightarrow 1,2T = 2 \pi \sqrt{\frac{\ell + \Delta \ell }{g}} \ (2)\)
Lấy \(\frac{(2)}{(1)} \Rightarrow \frac{1,2T}{T} = \sqrt{\frac{\ell + \Delta \ell }{\ell}}\)
\(\Rightarrow \frac{\ell + \Delta \ell }{\ell} = 1,2^2 = 1,44\)
\(\Rightarrow \ell = \frac{\Delta \ell }{0,44} = \frac{44}{0,44} = 100 \ (cm)\)